
Proposal
Authored by Jacob Jay

Nov. '08, r02

ProfileConnect
Gateway API Specification

A lightweight service discovery protocol and programmatic interface for
web-services handling a user's personal media assets and between third-
parties.

‘Profile Connect’ aims to simplify and standardised the ability to transfer social media
and access profiles—across different providers through an open specification for
interoperability.

With such an approach, users benefit from a uniform way of adding accounts for
diverse services, whilst both provider and client developers gain wider support
amongst each other's applications.

Contents

1. Model
1. Resources

1. Provider
2. Profiles
3. Service-types
4. Services
5. Objects
6. Dispatches

2. Mechanisms
1. Protocols
2. Response Formats
3. Response Statuses
4. Value Notations

2. Methods
provider.fetch
profile.create
profile.consumer.authorize
profile.service.subscribe
profile.services.fetch
object.create
objects.fetch
objects.dispatches.fetch
objects.dispatch
dispatches.fetch

Model

At the top is the provider which represents the server platform providing methods, to
which you as the developer of a consumer application, send requests (calls) to carry
out actions on resources of various classes that the provider supports. These requests
return results in a format that represent a resource's properties.

A method is the combination of a resource and an action, requested by the consumer
using an appropriate protocol. A provider may offer many such resources, methods,
and actions, but should support at least one protocol (e.g. HTTP POST) and format
(e.g. XML).

Most resources are associated with a user represented as a profile, on whose behalf a
consumer interacts with the provider. The provider employs authorization requiring that
users grant permission for a consumer to use methods on their behalf, and

file:///Users/jacobjay/Projects/ProfileConnect/Model
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#provider.fetch
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#provider.create
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#profile.consumer.authorize
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#profile.service.subscribe
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#profile.services.fetch
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#object.create
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#objects.fetch
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#objects.dispatches.fetch
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#objects.dispatch
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#dispatches.fetch
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#resources
file:///developers/methods/

authentication requiring that a consumer must both declare that it is authorised to
access methods on behalf of a user, as well as to confirm its own identity.

A service represents a process that can be applied to a resource (object) by
dispatching it to that service. For example a simple service might an image filter, whilst
a gateway provider might have services offering interfaces to remote third-party
providers—thus providing broadcast functionality in which a consumer could specify
objects to be dispatched (uploaded) to a user's accounts on their authorized third-party
services.

Resources

Resources are usually at the core of a provider and represent a variety of elements. All
resources are composed of any number of properties that are settable as (HTTP)
parameters in method requests, and gettable as (XML) properties from method
responses.

Properties are detailed for each resource below, but note that when interacting with
objects and services, the specific properties vary according to type. Properties are
simple name and value pairs or type, name and value triplets.

Provider

Represents the server platform. No methods defined at present.

Profiles

Represent users.

Standard Properties

name
The user's real name (if any).

Service-types

These may represents a remote provider such as Flickr or Blogger, identified with
reverse-canonical domain names (e.g. com.flickr or com.google.blogger). Note that
with Redirect Authorization of services a consumer need not ever interact with the
service-type object.

Standard Properties

objects
A list of the object types supported, see objects.

authorization
service-specifics

favicon
A URL for an image (GIF).

logo
A URL for an image (PNG).

Services

In the case of a gateway these represent a user's individual third-party accounts such
as photo sharing and social networking sites that accept media uploads. A profile may
be authorized for multiple services.

Services currently have no standard properties. See the services page for details of
adding services, and their respective properties.

Objects

file:///developers/services/
file:///Users/jacobjay/Projects/ProfileConnect/methods.html#morphology
file:///developers/services/
file:///developers/services/

Represent file-based media such as photos and video, or property-based items such
as blog posts and presence (status) updates. These can be dispatched (uploaded) to
services. Objects have differing properties according to type (see types below), but the
following standard properties are supported for most types.

Properties

types
title
description
keywords
See services for non-standard properties

Types

Objects behave differently when dispatched to services, and services may only accept
objects of specific types or with specific properties. An object may be of multiple (non-
conflicting) types simultaneously (type value is a list), but if not specified upon creation
a single default type should be assigned by the provider. Types have the following
property requirements.

file (default if data is present)
All standard properties are optional and valid
file:data is required as content, file:name is optional
title should not contain the file name

article (default if title and description are present)

description is required as content, title and keywords are optional
presence (default if only title is present)

title or description are valid as content (i.e. the user-defined status)
talk (default if only description is present)

title or description are valid as the content (e.g. a microblog post)
keywords are valid, and may be appended (e.g. as hashtags)

Transmogrification

If an object cannot be sent to a service a provider may transmogrify it. For example an
image could be sent to a microblog service by hosting it and sending a link instead,
and to blog services by hosting and referencing in a blog post. Additional methods may
be required to facilitate and control this process.

Dispatches

These represent job tickets assigned for processing objects with services. With queued
processing a consumer must query retroactively if it wishes to retrieve service-specific
response properties after an object is sent.

Properties

dispatch:created
See services for non-standard properties

Statuses

0 = delivered (confirmed)
1 = sent (unconfirmed)
2 = failed
3 = sending
4 = queued
5 = preprocessing
6 = receiving
8 = object not supported
9 = not available or unknown

Mechanisms

Protocols

file:///developers/services/
file:///developers/services/

HTTP Request

Should accept requests using HTTP with parameters encoded according to the
following Content-Types.

GET with urlencoded query string arguments
POST with Content-Type: multipart/x-www-form-urlencoded
POST with Content-Type: multipart/form-data

HTTP Response

HTTP status codes should only be respected if it is not possible to parse the response.

Response Formats

Content-Type: text/xml

<?xml version="1.0"?>
<api provider="com.example" title="Example" version="1.4">
 <response method="create.user" status="0">
 <!-- method response content -->
 </response>
</api>

The root element is api (its attributes can generally be ignored) which nests a response
element. If you know the method you called, you need not check the method attribute
value, however you must check the status attribute value (see statuses). The response
element contains the specific elements and properties from the requested method.

Response Statuses

All requests return a response status attribute in the response element with the value
corresponding to a status code number. A non-zero number indicates a failed request,
if the value is less than 100 it corresponds to the standard errors below, but if it is
greater than 100 it indicates a method specific failure code.

0 = success

1 = authentication required
2 = authentication failed
6 = temporary fault
20 = required parameters missing

The response element may include one or more message elements that should be
logged or displayed to a user. With sucessful requests (status 0) these represent
method-specific warnings, and with failed requests (status > 0) will further describe the
error causing failure. The message element's contents are always a full description,
and it may have an optional title, or url attribute.

 <message title="Invalid Authentication" url="">No valid credentials were provided</message>

Value Notations

Text

Should be UTF-8 encoded. Linebreaks should be UNIX-style using the LF character
(ASCII 10) only.

Serialised Lists

A list may contain one or more text values or serialised properties. Multiple values
must be delimited with the semi-colon character (ASCII 59) and without white-space. A
list should not be terminated with the delimiter, and qualification of values containing
spaces or other special values is not required. The ;= (semi-colon, equals) characters
are illegal in values and must be removed, replaced or percent-encoded.

Serialised Properties

A property is a name-value pair where the format is name=value delimited with an =

file:///Users/jacobjay/Projects/ProfileConnect/methods.html#statuses
file:///developers/methods/
file:///developers/methods/

(equals) character (e.g. "wibble=wobble" specifies a name of "wibble" and a value of
"wobble"). The ;:= (semi-colon, colon, equals) characters are illegal in names and
values and must be removed, replaced or their values should be percent-encoded.

Methods

profile.create

Note: This method is for use only when Web Authorization is impractical.

Create a new profile using the properties specified by the consumer making the
request, and authorise it to access the profile by returning a Profile Token.

The token should be saved securely (preferably encrypted) by the consumer
application, and is to be used when requesting resources requiring authentication with
a profile token.

Request

Authentication

Consumer
Provider [au]

Parameters

method
(Required) connect.profile.create
login (Optional)
User's email address.
pass (Optional)
User's password if a login is specified.
name (Optional)
User's first or full name.

Warning: If no login is specified the user can only be logged in using Redirect Access
and should the issued Profile Token become lost the account will be unrecoverable.
We recommend specifying a login where possible.

Response

XML

<resource class="profile" id="[id]" name="[name]">
 <property type="auth" name="token">[token]</property>
</resource>

Statuses

Standard

profile.consumer.authorize

file:///developers/provider#authorization
file:///developers/methods/migrate
file:///developers/provider#statuses

Note: This method is for use when Web Authorization is impractical.

From the profile (user) credentials specified by the consumer making the request,
authorise it to access the profile by returning a Profile Token.

The token should be saved securely (preferably encrypted) by the consumer
application, and is to be used when requesting resources requiring authentication with
a profile token. A consumer must never save or cache the user's Applications Key.

Request

Authentication

Consumer
Provider [ac]

Parameters

method
(Required) connect.profile.consumer.authorize
login (Required)
Value is user's registered email address.
pass (Required)
Value is user's Applications Key (not password) available to the user from their
settings on the site.

Response

XML

<resource class="profile" id="[id]" name="[name]">
 <property type="auth" name="token">[token]</property>
</resource>

Statuses

Standard

profile.service.subscribe

Subscribe a new service to a profile using the specified credentials if required. See
services for more details on working with services and their responses.

Request

Authentication

Profile
Consumer

Parameters

method (Required)
connect.profile.service.subscribe

file:///developers/provider#authorization
file:///developers/provider#statuses
file:///developers/services/

service-type (Required)
A service-type (from provider.services.fetch).
login (Conditional)
pass (Conditional)
url (Conditional)

Condition: Check the properties returned from provider.services.fetch for the desired
service type as different services may require different parameters and also may
specify parameter field labels to be displayed to the user when asking for input to avoid
confusion over values (e.g. login may require 'email address' or 'user name').

Response

XML

<resource class="service" id="[id]" name="[name]">
 <!-- if called with a valid credentials -->
 <property type="[type]" name="[name]">[value]</property>
 <!-- if called without valid credentials -->
 <property type="authorization" name="types">web;parameters;none</property>
 <!-- if authorization:types=web -->
 <property type="authorization" name="url">http://[…]</property>
 <!-- if authorization:types=parameters -->
 <property type="parameter" name="login">Email Address</property>
 <property type="parameter" name="pass">Password</property>
 <property type="parameter" name="url">Blog URL</property>
</resource>

Statuses

101 = Unknown service type
Standard

profile.services.fetch

Get the services associated with a profile. This allows a consumer to find out which
service types (from provider.services.fetch) a user is subscribed to.

Request

Authentication

Profile
Consumer

Parameters

method (Required)
connect.profile.services.fetch

Response

XML

<service id="0" type="default" name="My Default Pipes" />

file:///developers/methods/provider.services.fetch
file:///developers/methods/provider.services.fetch
file:///developers/provider#statuses
file:///developers/methods/provider.services.fetch

<service id="[id]" type="[type]" name="[name]">
 <property type="" name="default">[value]</property>
</service>

Note: Response always includes a default service with an id of 0, which represents a
user's enabled (default) destinations, dispatches sent to this service will actually send
to all enabled services. Consumers may wish to filter it out when dispalying services to
users.

Statuses

Standard codes

object.create

Create a new object resource (e.g. an image or presence update) on behalf of a user,
with the specified properties, and recieve an object ID. May also be used to dispatch
the object to services without requiring an additional request to the objects.dispatch
method.

Request

Parameters

method (Required)
connect.object.create
types (Conditional)
A semi-colon delimited list of types, if not specified we will automatically
ascertain the type.
title (Conditional)
A concise summary of the object, i.e. a name. (For a status update this would be
the status string.)
description (Conditional)
Text elaborating the content of the object. (For a blog post this would be the
article content.)
data (Conditional)
A file to upload such as an image or video. Presence of this value requires
Content-Type: multipart/form-data.
keywords (Optional)
A semi-colon delimited list of words ('tags') summarising the content of the
object.
service-ids (Optional)
A list of service IDs to which the object will be dispatched immediately. If this is
not specified the object will not be dispatched to any services, and the
objects.dispatch method should be called.
property:*
(Optional)Parameters prefixed with property: can be specified and will be
created as additional object properties. This enables handling of service-specify
properties. These properties are also returned by objects.fetch.

Condition: At least one of either type, title, description or file must be present or the
object will not be created.

Authentication

Profile
Consumer

Response

file:///developers/provider#statuses
file:///developers/methods/objects.dispatch
file:///developers/provider#morphology
file:///developers/methods/objects.dispatch
file:///developers/services/

XML

<resource class="object" id="[id]" uri="" />
<resource class="dispatch" id="[id]" service="[id]" status="5" />

Status

Standard codes

Messages

Too many properties. Only the first 25 created.
Property too long. Properties whose name and value exceeded 128 characters
were discarded.

profile.objects.fetch

Get the properties of an object. Currently this serves no useful purpose other than to
retrieve properties set during object creation if the consumer has not stored them
locally.

Request

Authentication

Profile
Consumer

Parameters

method (Required)
connect.profile.objects.fetch
object-ids (Required)
One or more semi-colon delimited object IDs.

Response

XML

<object id="[id]">
 <property type="[type]" name="[name]">[value]</property>
</object>

Statuses

Standard

objects.dispatches.fetch

For the specified object IDs, get the processing status and service response properties
for all services that each object has been dispatched to.

file:///developers/provider#statuses
file:///developers/provider#statuses

Request

Authentication

Profile
Consumer

Parameters

method (Required)
connect.objects.dispatches.fetch
object-ids (Required)
One or more semi-colon delimited object IDs.

Response

XML

<resource class="dispatch" id="[id]" status="0" object="[id]" service="[id]">
 <property type="dispatch" name="created">[timestamp]</property>
 <property type="[type]" name="[name]">[value]</property>
</resource>

Note: Resource element may be empty. Multiple resource elements may be returned.

Statuses

103 = Too many object IDs specified, max 25.
Standard codes

profile.objects.dispatch

For a specified object dispatch it to the specified service and get a dispatch ID. A
consumer may then use the ID to make a retro-active request to dispatches.fetch and
get the service response. Note that you can also dispatch objects with object.create.

Request

Authentication

Profile
Consumer

Parameters

method (Required)
connect.profile.objects.dispatch
object-ids (Required)
One or more semi-colon delimited object IDs.
service-ids (Required)
One or more semi-colon delimited service IDs (from profile.services.fetch). To
send to a user's default destinations use service ID 0.

Note: All specified objects will be sent to all matching services. We automatically match
objects to the types supported by a service and do not dispatch if they do not match or
cannot be transmogrified.

file:///developers/provider#statuses
file:///developers/methods/dispatches.fetch
file:///developers/methods/object.create
file:///developers/methods/profile.services.fetch
file:///developers/provider#objects

Response

XML

<resource class="dispatch" id="[id]" object="[id]" service="[id]" status="5" />

Note: Multiple resource elements may be returned.

Statuses

103 = Too many object-ids or service-ids specified, max 100.
Standard codes

profile.objects.dispatch

For a specified object dispatch it to the specified service and get a dispatch ID. A
consumer may then use the ID to make a retro-active request to dispatches.fetch and
get the service response. Note that you can also dispatch objects with object.create.

Request

Authentication

Profile
Consumer

Parameters

method (Required)
connect.profile.objects.dispatch
object-ids (Required)
One or more semi-colon delimited object IDs.
service-ids (Required)
One or more semi-colon delimited service IDs (from profile.services.fetch). To
send to a user's default destinations use service ID 0.

Note: All specified objects will be sent to all matching services. We automatically match
objects to the types supported by a service and do not dispatch if they do not match or
cannot be transmogrified.

Response

XML

<resource class="dispatch" id="[id]" object="[id]" service="[id]" status="5" />

Note: Multiple resource elements may be returned.

Statuses

103 = Too many object-ids or service-ids specified, max 100.
Standard codes

dispatches.fetch

file:///developers/provider#statuses
file:///developers/methods/dispatches.fetch
file:///developers/methods/object.create
file:///developers/methods/profile.services.fetch
file:///developers/provider#objects
file:///developers/provider#statuses

For the specified dispatch IDs, get the processing status and service response
properties. To get all dispatches for an object use objects.dispatches.fetch.

Request

Authentication

Profile
Consumer

Parameters

method (Required)
connect.dispatches.fetch
ids (Required)
One or more semi-colon delimited dispatch IDs.

Response

XML

<resource class="dispatch" id="[id]" status="0" object="[id]" service="[id]">
 <property type="dispatch" name="created">[timestamp]</property>
 <property type="[type]" name="[name]">[value]</property>
</resource>

Note: Resource element may be empty. Multiple resource elements will be returned if
multiple dispatch IDs are specified.

Statuses

103 = Too many dispatch IDs specified, max 100.
Standard codes

file:///developers/methods/objects.dispatches.fetch
file:///developers/provider#statuses

