
mediaSleeve
version 0.1 — 1st June '05

mediaSleeve has been conceived as a basic service discovery protocol for
annotations and artwork from internet radio streams. It is intended for
implementation by streaming providers, radio hosts, and playback clients. It can be
used to deliver information relating to the stream to the listener, however the design
is not specific to this use and may be extended in other ways.

Contents

Implementation Guide

The Resource
The Methods
The Mechanisms

Terminology

Content refers to a stream or the end-function of a URL.
Server refers to an ISP or server from which content is served or hosted (a
service provider).
Author refers to the originator of content (a radio DJ).
The Resource refers to the mediaSleeve function as implemented on a
server.
The Service refers to the data provided by the resource.

Service Discovery

A common endpoint

http://example.com/mediasleeve/

This resource must be implmented at the domain (or site) of the author and
should be implemented at the domain of the server (if different).

The URL may be aliased using an HTTP redirect (i.e. to another URL
such as http://example.com/api/sleeve/). Client implementations must
respect and follow HTTP redirects. The mediaSleeve URL is lower-
case.

The common endpoint provides the ability to efficiently discover the mediaSleeve
resource. If the server supports the service, retrieval of the resource will return an
HTTP 200 (or redirect) and the service response (see below), if the service does
not support mediaSleeve, it will return an HTTP 404.

HTTP GET may not be used for any other purpose than service
discovery, however HEAD is recommended for discovery when not
combined with a query.

Where the mediaSleeve resource cannot be provided by the server, the following
methods may be provided by the author.

Streams

The domain or path of the author's site should be written in the stream name as the
last element following a -- delimiter. Clients should parse the name for this token

Current status

This is a work-in-progress
planned for trial implemention
in both a desktop client
(OnDeck – OS X) and an
internet radio stream
(Atmosphere).

Further information

Feedback, suggestions and
greater participation are
welcomed! Please visit the
mediaSleeve Google group.

The author

Jacob Jay
< jjay [at] verse [dot] org >

http://mediasock.org/sleeve#implement
http://mediasock.org/sleeve#implement
http://mediasock.org/sleeve#methods
http://mediasock.org/sleeve#mechanisms
http://holocore.com/PictureSync
http://atmsphr.org/
http://groups-beta.google.com/group/mediasleeve
http://verseguru.com/?weblog


and then retrive the resource at that address.

My Streaming Radio: 24/7 Electronica -- example.com

Other methods

Clients may define their own methods to handle content not suppored by the above
discovery methods, such as a lookup directory mapping content URLs to author
domains.

Protocol

mediaSleeve uses HTTP on port 80 and employs a REST/RSS model in which
queries are POSTed to the resource as application/x-www-form-urlencoded and
responses returned as XML.

Linebreaks are expected to be UNIX-style using the LF character
(ASCII 10). Text endcoding is presumed to be UTF-8.

Standard response

The XML response format to be returned by the core methods when a protocol
does not otherwise specify format (i.e. REST), is as follows:

The XML identifier is optional, and the entire block may be placed in
a comment if desired (ideally in the head of the document). Every
element of the method response(s) must appear on individual lines
and no changes may be made to their spacing or the ordering of
attributes (elements can be reordered). This structure is used to ease
parsing with substrings and tokens in non-XML capable clients. This
response may be embedded in HTML inside a comment if necessary.

Queries

Custom parameters may be included in queries, however these
should not alter the core functionality provided by the method.
Parameter names starting 'm-' are reserved. Custom elements may
be included in responses but the names of these may only start with
'x-', all other names are reserved. Custom attributes may not be
included.

Query

A client will post the following fields to the resource.

url – the URL of the content
ask – an optional list of data type to be returned

Response

The resource will return XML:

<?xml version="1.0"?>
<mediasleeve>
<notify name="Untitled" id="123" href="http://example.com/author" />
<content url="rtsp://example.com/example.pls" date="UTC" name="example"
href="http://example.com" refresh="UTC" description="" />
<artwork url="http://example.com/artwork.jpg" href="http://amazon.com/" />
<album name="Untitled" creator="Unknown" href="http://amazon.com/" />
<track name="Untitled" creator="Unknown" href="http://amazon.com/" />
<programme name="Untitled" creator="Unknown" href="http://example.com/author" />
</content>
</mediasleeve>



refresh – number of seconds in which to refresh the data
href – a URL which can be provided as a link for the respective data
creator – the artist, author or other originator of the content
programme – used in cases where the content is a segment of a show or
no other d
notify – a message to be broadcast to users, id is any arbitrary number
(prevents users from getting the message repeatedly)
ath – a list of supported authentication identifiers (optional)
cip – a list of supported encryption identifiers (optional)
key – a session token for authentication (optional)
doc – the path or URL to API documentation for humans (optional)

Function

A service should return an act value of NO in all cases except when it recieves a
valid login query (username parameter is present), in which case it should return
OK, or ERR as appropriate. Under special circumstances (outages, disabled
account) a service may return an act of URL and with a specific URL for the user to
visit for more details in place of the usual res value.

A client application may carry out an initial login with its preferred compatability
options, or with none specified (i.e. the defaults of REST protocol, ST
authentication, NO encryption) and only parse the service compatability values to
retry the login appropriately when the act value returned is NO. If the act returned
is URL the client should display that URL to the user and ask them if they wish to
open that URL, otherwise the act should be treated as ERR.


